Part Number Hot Search : 
AO3402 SLA7060 GBPC601 MC340 TDA8920J 01500 C4008 1N5336A
Product Description
Full Text Search
 

To Download HFA3624IA96 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  2-27 hfa3624 2.4ghz up/down converter the intersil 2.4ghz prism? chip set is a highly integrated five-chip solution for rf modems employing direct sequence spread spectrum (dsss) signaling. the hfa3624 rf/if converter is one of the ?ve chips in the prism? chip set (see figure 1 for the typical application circuit). the hfa3624 up/down converter is a monolithic bipolar device for up/down conversion applications in the 2.4ghz to 2.5ghz range. manufactured in the intersil uhf1x process, the device consists of a low noise amplifier and down conversion mixer in the receive section and an up conversion mixer with power preamp in the transmit section. an energy saving power enable control feature assures isolation between the receive and transmit circuits for time division multiplexed systems. the device requires low drive levels from the local oscillator and is housed in a small outline 28 lead ssop package ideally suited for pcmcia card applications. pinout hfa3624 (ssop) top view features ? complete receive/transmit front end ? rf frequency range . . . . . . . . . . . . . . 2.4ghz to 2.5ghz ? if operation . . . . . . . . . . . . . . . . . . . . . 10mhz to 400mhz ? single supply battery operation . . . . . . . . . 2.7v to 5.5v ? independent receive/transmit power enable mode applications ? systems targeting ieee 802.11 standard ? pcmcia wireless transceiver ? wireless local area network modems ? tdma packet protocol radios ? part 15 compliant radio links ? portable battery powered equipment block diagram ordering information part number temp. range ( o c) package pkg. no. hfa3624ia -40 to 85 28 ld ssop m28.15 HFA3624IA96 -40 to 85 tape and reel ? rx_pe gnd rxm_if+ rxm_if- lo_in txm_if- txm_if+ rx_v cc txm_rf lna_rx_v cc2 gnd lna_rx_out lna_rx_v cc1 gnd pre_tx_out pre_tx_v cc2 gnd pre_tx_in gnd lna_rx_in gnd gnd pre_tx_v cc1 rxm_rf lo_by gnd tx_v cc tx_pe 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rxm_if+ lo_in txm_if+ lna_rx_in pre_tx_out lna_rx_out rxm_rf pre_tx_in txm_rf tx_pe rx_pe rxm_if- lo_by txm_if- lna pre rxm txm lob tx bias rx bias data sheet november 1998 file number 4066.8 caution: these devices are sensitive to electrostatic discharge; follow proper ic handling procedures. http://www.intersil.com or 407-727-9207 | copyright ? intersil corporation 1999 prism? is a registered trademark of intersil corporation. prism logo is a trademark of intersil corporation.
2-28 for additional information on the prism? chip set, call (407) 724-7800 to access intersil answerfax system. when prompted, key in the four-digit document number (file #) of the datasheets you wish to receive. the four-digit ?le numbers are shown in figure 1, and correspond to the appropriate circuit. quad if modulator rfpa hfa3925 hfa3724 dsss baseband processor data to mac ctrl hsp3824 tune/select hfa3524 0 o /90 o vco a/d a/d mac-phy interface 802.11 vco dual synthesizer hfa3624 up/down converter a/d (file# 4067) (file# 4064) (file# 4062) (file# 4132) prism? chip set file #4063 m u x m u x dpsk demod dpsk mod. de- spread spread q i hfa3424 (note) (file# 4131) note: required for systems targeting 802.11 speci?cations. figure 1. typical transceiver application circuit using the hfa3624 cca rxi rxq rssi txi txq ? 2 (file# 4066) hfa3624
2-29 absolute maximum ratings thermal information supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3v to +6.0v voltage on any other pin. . . . . . . . . . . . . . . . . . . -0.3 to v cc +0.3v operating conditions supply voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7v to 5.5v temperature range . . . . . . . . . . . . . . . . . . . . . . . -40 o c t a 85 o c thermal resistance (typical, note 1) q ja ( o c/w) 28 lead plastic ssop . . . . . . . . . . . . . . . . . . . . . . . 88 package power dissipation at 70 o c 28 lead plastic ssop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9w maximum junction temperature . . . . . . . . . . . . . . . . . . . . . . . 150 o c maximum storage temperature range . . . . . . .-65 o c t a 150 o c maximum lead temperature (soldering 10s) . . . . . . . . . . . . . 300 o c (ssop - lead tips only) caution: stresses above those listed in absolute maximum ratings may cause permanent damage to the device. this is a stress only rating and operatio nofthe device at these or any other conditions above those indicated in the operational sections of this speci?cation is not implied. note: 1. q ja is measured with the component mounted on an evaluation pc board in free air. electrical speci?cations v cc = +2.7v, lo = 2170mhz, if = 280mhz, rf = 2450mhz, z o =50 w , unless otherwise speci?ed parameter symbol temp ( o c) min typ max units lo input characteristics (lo_in = 2170mhz/-3dbm, rs lo = 50 w , tested in both rx and tx modes, all unused inputs and outputs are terminated into 50 w ) lo input frequency range lo_f 25 2.0 - 2.49 ghz lo input drive level lo_dr 25 -6 -3 3 dbm lo input vswr lo_swr full - 1.5 2.0:1 - receive lna characteristics (lna_rx_in = 2450mhz/-25dbm, rs = rl = 50 w , receive mode) receive lna frequency range lna_f 25 2.4 - 2.5 ghz lna noise figure lna_nf 25 - 3.5 - db lna power gain lna_pg full 13.5 15.5 - db lna reverse isolation (source = 2450mhz/-25dbm) lna_iso 25 - 30 - db lna output 3rd order intercept (lna_rx_in = 2449.9mhz, 2450.1mhz / -35dbm) lna_ip3 25 - 18 - dbm lna output 1db compression lna_p1d 25 - 5.5 - dbm lna input vswr lna_iswr full - 1.85:1 2.2:1 - lna input return loss lna_irl full - 10.5 8.5 db lna output vswr lna_oswr full - 1.6 2.0:1 - lna output return loss lna_orl full - 12.7 9.5 db receive mixer characteristics (lo_in = 2170mhz/-3dbm, rxm_rf = 2450mhz/-25dbm, rs lo = 50 w , rs rf = 50 w , rl if = 50 w with external matching network (note 2), receive mode) mixer rf frequency range rxm_rff 25 2.4 - 2.5 ghz mixer if frequency range rxm_iff 25 10 - 400 mhz ssb noise figure (note 3) rxm_nf 25 - 15 - db mixer power conversion gain (note 2) rxm_pg 25 4 6 - db 85 3 - - db mixer if output 3rd order intercept (rxm_rf = 2449.9mhz, 2450.1mhz/-30dbm) rxm_ip3 25 - 4.0 - dbm mixer if output 1db compression rxm_p1d 25 - -5 - dbm mixer rf input vswr (2.4ghz to 2.5ghz) rxm_swr 25 - 1.5:1 2.0:1 - mixer rf input return loss rxm_irl 25 - 14.0 9.5 db if open collector output resistance (if = 280mhz) rxm_rout 25 - 1.5 - k w if open collector output capacitance rxm_cout 25 - 0.4 - pf hfa3624
2-30 mixer lo to rf isolation rxa_lor 25 - 22 - db receive lna/mixer cascaded characteristics (-3db loss rf image filter between lna and mixer, lna_rx_in = 2450mhz/- 25dbm, rl if = 250 w external matching network, (note 6)) cascaded noise figure crx_nf 25 - 6.24 - db cascaded power gain crx_pg 25 15 18 - db 85 14 - - db cascaded input ip3 crx_ip3 25 - -14.1 - dbm cascaded input compression point crx_p1d 25 - -23.2 - dbm maximum input power (output may be gain compressed, but functional) crx_dr 25 - +3 - dbm transmit mixer characteristics (lo_in = 2170mhz/-3dbm, txm_if+ = 280mhz/-13dbm, rs if = 50 w , rs lo = 50 w , rl rf = 50 w , transmit mode) if input frequency range txm_iff 25 10 - 400 mhz if input resistance (if = 280mhz) txm_rin 25 - 3 - k w if input capacitance (if = 280mhz) txm_cin 25 - 0.5 - pf power conversion gain (rs if = 50 w ) txm_pg50 25 -6 -3.4 - db 85 -7.5 - - db power conversion gain (rs if = 250 w ) (notes 4, 5) txm_pg250 25 -0.5 2.1 - db 85 -2 - - db transmit mixer lo leakage txm_leak 25 - -20 -18 dbm rf output frequency range txm_rff 25 2.4 - 2.5 ghz txm_rf vswr (2.4ghz to 2.5ghz) txm_oswr full - 1.5 2.0:1 - txm_rf return loss txm_orl full - 14 9.5 db mixer output 1db compression txm_p1d 25 - -10.5 - dbm output ssb noise figure (rs if = 50 w ) txm_nf50 25 - 18.3 - db output 3rd order intercept (rs if = 50 w ) txm_ip3_50 25 - 1.1 - dbm output ssb noise figure (rs if = 250 w ) txm_nf250 25 - 14.5 - db output 3rd order intercept (rs if = 250 w ) txm_ip3_250 25 - -1.5 - dbm transmit power pre-amp characteristics (pre_in = 2450mhz/-13dbm, rs = rl = 50 w , transmit mode) power pre-amp frequency range pre_f 25 2.4 - 2.5 ghz power gain pre_pg 25 10.8 12.3 - db 85 7.8 - - db pre_amp output 1db compression pre_p1d 25 5.0 5.6 - dbm pre_amp noise figure pre_nf 25 - 5.7 - db pre_amp output 3rd order intercept pre_ip3 25 - 15.3 - dbm pre_amp input vswr (2.4ghz to 2.5ghz) pre_iswr full - 1.3:1 2.0:1 - pre_amp input return loss pre_irl full - 17.7 9.5 db pre_amp output vswr (2.4ghz to 2.5ghz) pre_oswr full - 1.3:1 2.0:1 - pre_amp output return loss pre_orl full - 17.7 9.5 db electrical speci?cations v cc = +2.7v, lo = 2170mhz, if = 280mhz, rf = 2450mhz, z o =50 w , unless otherwise speci?ed (continued) parameter symbol temp ( o c) min typ max units hfa3624
2-31 transmit mixer/power pre-amp cascaded characteristics (txm_if+ = 280mhz/-13dbm, -3db loss rf image filter with no lo suppression between mixer and transmit amp, rl = 50 w , rs if = 250 w (note 6)) cascaded power gain ctx_pg 25 8 11.4 - db 85 5.5 - - db cascaded output p1db ctx_p1d 25 - -2.0 - dbm cascaded output nf ctx_nf 25 - 15 - db cascaded output 3rd order intercept ctx_ip3 25 - 7.1 - dbm cascaded lo leakage ctx_leak 25 - -8.7 - dbm power supply and logic characteristics voltage supply range v cc 25 2.7 - 5.5 v transmit mode supply current (v cc = 2.7v) tx_2.7i cc 25 32 49 57 ma 85 43 - 64 ma receive mode supply current (v cc = 2.7v) rx_i cc 25 10 18 20.5 ma 85 19 22.5 24 ma power down current (v cc = 5.5v) i cc _pd full - 0.3 10 m a logic input low level v il full -0.2 - 0.8 v logic input high level v ih full 2.0 - v cc v logic low input bias current (v pe = 0v, v cc = 5.5v) i b _lo full - - 1 m a logic high input bias current (v pe = 5.5v, v cc = 5.5v) i b _hi full - - 150 m a tx/rx power enable time (note 7) pet full - 0.25 1 m s tx/rx power disable time (note 7) pdt full - 0.25 1 m s notes: 2. see figure 5 test circuit for 50 w if matching network component values. 3. ssb (single side band) noise figure measurement requires the use of an if reject/highpass filter between the noise source and the rxm_rf port. this filter prevents if input noise from interfering with the mixer if output noise figure measurement. 4. transmit mixer measured with impedance transform network 250 w at device to 50 w at the source. refer to figure 5, pin 19. 5. implied limit, production measurement uses 50 w termination at pin 19 (rs if =50 w ). typical transmit conversion gain increase of 5.5db with application circuit figure 5 (rs if = 250 w ). 6. see figure 2 for typical application circuit. 7. enable/disable time specifications are tested with the external component values shown in the figure 5 test circuit, with an if frequency of 280mhz. specifically the ac coupling capacitors on the txm_if+ and txm_if- pins are biased up to operating voltage from a fixed internal current source at power up. increasing these ac coupling capacitors above 1000pf will slow enable time proportionately. power control truth table state rx_pe tx_pe power down (receive/transmit channels power down) low low transmit mode (receive channel power down) low high receive mode (transmit channel power down) high low not recommended high high electrical speci?cations v cc = +2.7v, lo = 2170mhz, if = 280mhz, rf = 2450mhz, z o =50 w , unless otherwise speci?ed (continued) parameter symbol temp ( o c) min typ max units hfa3624
2-32 pin descriptions pins symbol description 1 lna_rx_v cc2 receive channel low noise ampli?er output stage positive power supply. use high quality decoupling ca- pacitors right at the pin. a 5pf chip capacitor is recommended. 3 lna_rx_out receive channel low noise ampli?er output (2400mhz to 2500mhz). the nominal impedance of 50 w , over the operating frequency range, is achieved with an on chip narrowband tuned circuit. this pin requires ac coupling. 5 lna_rx_v cc1 receive channel low noise ampli?er input stage positive power supply. use high quality decoupling ca- pacitors right at the pin. a 200pf chip capacitor is recommended. 7 lna_rx_in receive channel low noise ampli?er input (2400mhz to 2500mhz). the nominal impedance of 50 w ,over the operating frequency range, is achieved with an on chip narrowband tuned circuit. this pin requires ac coupling. 8 pre_tx_out transmit channel power pre-ampli?er output (2400mhz to 2500mhz). the nominal impedance of 50 w , over the operating frequency range, is achieved with on chip narrowband tuned circuit. this pin requires ac coupling. 10 pre_tx_v cc2 transmit channel power pre-ampli?er output stage positive power supply. use high quality decoupling ca- pacitors right at the pin. a 200pf chip capacitor is recommended. 12 pre_tx_in transmit channel power pre-ampli?er input (2400mhz to 2500mhz). the nominal impedance of 50 w ,over the operating frequency range, is achieved with an on chip narrowband tuned circuit. this pin requires ac coupling. 14 pre_tx_v cc1 transmit channel power pre-ampli?er input stage positive power supply. use high quality decoupling ca- pacitors right at the pin. a 200pf chip capacitor is recommended. 15 tx_pe transmit channel power enable control input. ttl compatible input. refer to power control truth table on previous page. 16 tx_v cc transmit channel positive power supply. use high quality decoupling capacitors right at the pin. a 200pf chip capacitor is recommended. 17 txm_rf transmit channel mixer rf output (2400mhz to 2500mhz). the nominal impedance of 50 w , over the op- erating frequency range, is achieved with an on chip narrowband tuned circuit. this pin requires ac cou- pling. 19 txm_if+ transmit channel mixer if+ input (10mhz to 400mhz). the txm_if+ and txm_if- pins form a high input impedance differential pair. either input (or both inputs for special applications) may be used for the if sig- nal. typically the txm_if- pin is bypassed to ground with a 470pf capacitor and the txm_if+ pin is ac coupled to the transmit if signal. the high impedance input requires external termination. the speci?ed in- put impedance is modeled as a resistor in parallel with a capacitor derived from s parameters at 280mhz. the input impedance will increase at lower if frequencies. this pin requires ac coupling. increasing the ac coupling capacitor to larger than 1000pf will degrade transmit enable time. 20 txm_if- transmit channel mixer if- input (10mhz to 400mhz). the txm_if+ and txm_if- pins form a high input impedance differential pair. either input (or both for special applications) may be used for the if signal. typ- ically the txm_if- pin is bypassed to ground with a 470pf capacitor and the txm_if+ pin is ac coupled to the transmit if signal. the high impedance input requires external termination. the speci?ed input imped- ance is modeled as a resistor in parallel with a capacitor derived from s parameters at 280mhz. the input impedance will increase at lower if frequencies. this pin requires ac coupling. increasing the ac coupling capacitor to larger than 1000pf will degrade transmit enable time. 21 lo_in local oscillator input (2000mhz to 2490mhz). the lo_in and lo_by pins form a differential pair with a mutual broadband 50 w impedance. refer to the lo_by pin for details. the recommended lo power is - 3dbm, however usable performance is obtained for the range -6dbm to +3dbm. the lo_in pin requires ac coupling. 22 lo_by local oscillator input bypass (2000mhz to 2490mhz). the lo_in and lo_by pins form a differential pair with a mutual broadband 50 w input impedance. the lo_by pin can be used as a signal input, but may have slightly degraded performance due to a clamp circuit to gnd. typically the lo_by pin is bypassed to gnd with a 5pf capacitor. the lo_by pin requires ac coupling. hfa3624
2-33 23 rxm_if- receive channel mixer if- output (10mhz to 400mhz). the rxm_if+ and rxm_if- pins form a compli- mentary open collector output driver pair. the open collector outputs require an external load to v cc not to exceed 500 w, for the single ended if case shown in figure 3, or 1k w for the differential if cases shown in figures 2 and 4. this pin requires ac coupling. 24 rxm_if+ receive channel mixer if+ output (10mhz to 400mhz) the rxm_if+ and rxm_if- pins form a compli- mentary open collector output driver pair. the open collector outputs require an external load to v cc not to exceed 500 w, for the single ended if case shown in figure 3, or 1k w for the differential if cases shown in figures 2 and 4. this pin requires ac coupling. 26 rxm_rf receive channel mixer rf input (2400mhz to 2500mhz). the nominal impedance of 50 w , over the oper- ating frequency range, is achieved with an on chip narrowband tuned circuit. this pin requires ac coupling. 27 rx_v cc receive channel positive power supply. use high quality decoupling capacitors right at the pin. a 200pf chip capacitor is recommended. 28 rx_pe receive channel power enable control input. ttl compatible input. refer to power control truth table on previous page. 2, 4, 6, 9, 11, 13, 18, 25 gnd circuit ground pins (qty 8). internally connected. typical application circuits figure 2. differential to single ended if output translation with 250 w if impedance pin descriptions (continued) pins symbol description transmit receive v cc = 2.7v rf input 2450mhz 50 w rf output if input 280mhz, 250 w lo input 2170mhz if output rxm_rf gnd rxm_if+ rxm_if- lo_by lo_in txm_if- txm_if+ gnd txm_rf tx_v cc tx_pe c19 c37 c26 r35 250 w l46 l47 r50 c48 c51 c21 c32 rxa_v cc2 gnd rxa_out c12 c13 gnd rxa_v cc1 gnd rxa_in txa_out c41 gnd c40 txa_v cc2 gnd c11 txa_in gnd txa_v cc1 c10 enable enable 280mhz 250 w 2450mhz 50 w rxa txa rxm txm lob tx bias rx bias rx_pe rx_v cc -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 27 26 25 24 23 22 21 20 19 18 17 16 15 28 c25 c23 c27 c45 50 w -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 1 2 3 5 6 7 8 9 10 11 12 13 14 4 hfa3624 c28 c14 c15 22 22 hfa3624
2-34 figure 3. single ended if output with 250 w if impedance typical application circuits (continued) transmit receive v cc = 2.7v rf input 2450mhz 50 w rf output if input 280mhz, 250 w lo input 2170mhz if output rxm_rf gnd rxm_if+ rxm_if- lo_by lo_in txm_if- txm_if+ gnd txm_rf tx_v cc tx_pe c19 c37 c26 r35 250 w l46 r50 c48 c51 c21 c32 rxa_v cc2 gnd rxa_out c12 c13 gnd rxa_v cc1 gnd rxa_in txa_out c41 gnd c40 txa_v cc2 gnd c11 txa_in gnd txa_v cc1 c10 enable enable 280mhz 250 w 2450mhz 50 w rxa txa rxm txm lob tx bias rx bias rx_pe rx_v cc -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 27 26 25 24 23 22 21 20 19 18 17 16 15 28 c25 c23 c27 50 w -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 1 2 3 5 6 7 8 9 10 11 12 13 14 4 hfa3624 c28 c14 c15 22 hfa3624
2-35 figure 4. differential to single ended if output translation using transformer into 250 w typical application circuits (continued) transmit receive v cc = 2.7v rf input 2450mhz 50 w rf output if input 280mhz lo input 2170mhz if output rxm_rf gnd rxm_if+ rxm_if- lo_by lo_in txm_if- txm_if+ gnd txm_rf tx_v cc tx_pe c19 c37 c26 r35 250 w r50 c21 c32 rxa_v cc2 gnd rxa_out c12 c13 gnd rxa_v cc1 gnd rxa_in txa_out c41 gnd c40 txa_v cc2 gnd c11 txa_in gnd txa_v cc1 c10 enable enable 280mhz 250 w 2450mhz 50 w rxa txa rxm txm lob tx bias rx bias rx_pe rx_v cc -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 27 26 25 24 23 22 21 20 19 18 17 16 15 28 c25 c23 c27 50 w -3db/50 w bpf 2450mhz lfj30-03b2442b084 murata 1 2 3 5 6 7 8 9 10 11 12 13 14 4 hfa3624 c28 c4 xfmr 500 w :250 w (2:1) 250 w c31 c14 c15 22 22 c27 hfa3624
2-36 figure 5. optimized lab evaluation circuit typical performance curves figure 6. transmit pre-amp 1db compression figure 7. transmit mixer 1db compression typical application circuits (continued) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 lna_v cc 2 gnd lna_out gnd lna_v cc 1 gnd lna_in pre_out gnd txa_v cc 2 gnd pre_in gnd pre_v cc 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rx_pe rxm_rf gnd rxm_if+ rxm_if- lo_in txm_if+ gnd txm_rf tx_v cc tx_pe rx_v cc lo_by txm_if- lna rxm lob txm pre rx hfa3624 bias tx bias c7 200pf c16 5pf c15 5pf v cc = 2.7v c26 200pf c13 2.2 m f amp rf output 50 w output 50 w c8 5pf sig. gen. 2450mhz 50 w c9 5pf sig. gen. 2450mhz 50 w c11 2200pf c1 200pf receive enable c14 5pf c22 5pf c24 470pf c20 10pf c10 200pf sig. gen. 2450mhz 50 w 280mhz 50 w c17 2.7pf r6 2k w transmit enable c23 200pf amp rf transmit receive c2 200pf c19 200pf c6 470pf l3 l2 39nh 12nh l1 68nh if output c18 470pf c28 10pf c21 470pf r5 250 w l4 47nh sig. gen. 280mhz 50 w mixer rf output 50 w sig. gen. 2170mhz 50 w transmit. c25 1.5pf amp c5 6.8pf c3 5pf c4 5pf 22 22 power gain (db) 16 15 14 13 12 -25 -21 -17 -13 -9 -5 if input power (dbm) v cc = 2.7v t a = 25 o c 1db compression point 1db conversion gain (db) -3 -4 -5 -6 -7 -20 -17 -14 -11 -8 -5 if input power (dbm) 1db compression point 1db v cc = 2.7v t a = 25 o c hfa3624
2-37 figure 8. pre-amplifier s 11 log mag input return loss figure 9. pre-amplifier s 21 log mag forward gain figure 10. pre-amplifier s 12 log mag reverse isolation figure 11. pre-amplifier s 22 log mag output return loss figure 12. lna s 11 log mag input return loss figure 13. lna s 21 log mag forward gain typical performance curves (continued) v cc = 2.7v t a = 25 o c mag (db) 10 0 -10 -20 1.0 2.0 3.0 frequency (ghz) dut + fixture dut v cc = 2.7v t a = 25 o c mag (db) 30 20 10 0 1.0 2.0 3.0 frequency (ghz) dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) -20 -30 -40 -50 1.0 2.0 3.0 frequency (ghz) dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) 0 -10 -20 -30 1.0 2.0 3.0 frequency (ghz) dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) 10 0 -10 -20 1.0 2.0 3.0 frequency (ghz) dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) 20 10 0 -10 1.0 2.0 3.0 frequency (ghz) 30 dut dut + fixture hfa3624
2-38 figure 14. lna s 12 log mag reverse isolation figure 15. lna s 22 log mag output return loss figure 16. transmit mixer s 22 log mag rf output return loss note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 17. transmit mixer s 11 log mag if input return loss note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 18. transmit mixer conversion gain vs if frequency sweep figure 19. receive mixer s 11 log mag rf input return loss typical performance curves (continued) v cc = 2.7v t a = 25 o c mag (db) -20 -40 -60 -80 1.0 2.0 3.0 frequency (ghz) 0 dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) 0 -10 -20 -30 1.0 2.0 3.0 frequency (ghz) 10 dut dut + fixture v cc = 2.7v t a = 25 o c mag (db) 10 0 -10 -20 1.0 2.0 3.0 frequency (ghz) v cc = 2.7v, (note) t a = 25 o c mag (db) -10 -20 -30 -40 230 270 330 frequency (mhz) 0 310 290 250 v cc = 2.7v, (note) t a = 25 o c, lo = 2.17ghz mag (db) 0.3 -1.7 -3.7 2.4 2.45 2.5 frequency (ghz) 2.3 v cc = 2.7v t a = 25 o c mag (db) 10 0 -10 -20 1.0 2.0 3.0 frequency (ghz) hfa3624
2-39 figure 20. receive mixer s 22 log mag if output return loss figure 21. receive mixer conversion gain vs lo frequency sweep figure 22. lo_in s 11 log mag receive mode lo input return loss figure 23. lo_in s 11 log mag transmit mode lo input return loss figure 24. low noise amplifier gain vs frequency figure 25. low noise amplifier ip3 vs frequency typical performance curves (continued) v cc = 2.7v t a = 25 o c mag (db) 0 -10 -20 frequency (mhz) 230 270 330 310 290 250 230 270 330 310 290 250 v cc = 2.7v, t a = 25 o c r f = 2.45ghz mag (db) 3 1 frequency (mhz) 7 5 v cc = 2.7v t a = 25 o c mag (db) 0 -10 -20 -30 1.0 2.0 3.0 frequency (ghz) v cc = 2.7v t a = 25 o c mag (db) 0 -10 -20 -30 1.0 2.0 3.0 frequency (ghz) 2.3 2.35 2.4 2.45 2.5 2.55 2.6 13 14 15 16 17 18 19 frequency (ghz) gain (db) 2.7v 4.0v 5.5v 3.0v t a = 25 o c 2.3 2.35 2.4 2.45 2.5 2.55 2.6 15 16 17 18 19 20 21 22 23 frequency (ghz) third order intercept (dbm) 2.7v 3.0v 4.0v 5.5v t a = 25 o c, f 1 -f 2 = 200khz hfa3624
2-40 figure 26. low noise amplifier noise figure vs frequency figure 27. pre-amplifier gain vs frequency figure 28. pre-amplifier rf output 1db compression vs frequency figure 29. receive mixer gain vs rf frequency for fixed if frequency figure 30. receive mixer ip3 vs rf frequency figure 31. receive mixer ssb noise figure vs rf frequency typical performance curves (continued) 2.3 2.35 2.4 2.45 2.5 2.55 2.6 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 frequency (ghz) noise figure (db) 5.5v t a = 25 o c 4.0v 2.7v 3.0v 4.3 2.3 2.35 2.4 2.45 2.5 2.55 2.6 8 9 10 11 12 13 14 15 frequency (ghz) gain (db) 3.0v 4.0v 2.7v 5.5v t a = 25 o c 2.3 2.35 2.4 2.45 2.5 2.55 2.6 3 4 5 6 7 8 9 10 frequency (ghz) 1db compression (dbm) 2.7v 3.0v 5.5v 4.0v t a = 25 o c 2.3 2.35 2.4 2.45 2.5 2.55 2.6 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 rf frequency (ghz) gain (db) 4.0v 5.5v 2.7v 3.0v t a = 25 o c if = 280mhz 2.3 2.35 2.4 2.45 2.5 2.55 2.6 3 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 rf frequency (ghz) third order intercept (dbm) 3.0v 4.0v 5.5v 2.7v f 1 -f 2 = 200khz if = 280mhz t a = 25 o c 2.3 2.35 2.4 2.45 2.5 2.55 2.6 13.5 14.0 14.5 15.0 15.5 16.0 16.5 rf frequency (ghz) noise figure (db) 2.7v 4.0v 5.5v 3.0v t a = 25 o c, if = 280mhz hfa3624
2-41 figure 32. receive mixer lo to rf port leakage vs lo frequency figure 33. receive mixer lo to if port leakage vs lo frequency note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 34. transmit mixer gain vs rf frequency note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 35. transmit mixer output 1db compression vs rf frequency note: transmit mixer measured with impedance transform network 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 36. transmit mixer ssb noise figure vs rf frequency figure 37. transmit mixer lo to rf port leakage vs lo frequency typical performance curves (continued) 2.02 2.07 2.12 2.17 2.22 2.27 2.32 -29.0 -28.5 -28.0 -27.5 -27.0 -26.5 -26.0 -25.5 -25.0 -24.5 -24.0 lo frequency (ghz) power (dbm) 4.0v 5.5v 2.7v 3.0v t a = 25 o c, lo_in = -3dbm 2.02 2.07 2.12 2.17 2.22 2.27 2.32 -41 -40 -39 -38 -37 -36 -35 -34 lo frequency (ghz) power (dbm) 5.5v t a = 25 o c, lo_in = -3dbm 2.7v 3.0v 4.0v 2.3 2.35 2.4 2.45 2.5 2.55 2.6 -1 0 1 2 3 4 5 6 rf frequency (ghz) gain (db) 2.7v 3.0v 5.5v t a = 25 o c, if = 280mhz (note) 4.0v 2.3 2.35 2.4 2.45 2.5 2.55 2.6 -13 -12 -11 -10 -9 -8 -7 -6 rf frequency (ghz) 1db compression (dbm) 2.7v 4.0v 5.5v t a = 25 o c, if = 280mhz (note) 3.0v 2.3 2.35 2.4 2.45 2.5 2.55 2.6 13 13.5 14 14.5 15 15.5 16 16.5 rf frequency (ghz) noise figure (db) 4.0v 5.5v t a = 25 o c, if = 280mhz (note) 2.7v 3.0v 2.02 2.07 2.12 2.17 2.22 2.27 2.32 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 lo frequency (ghz) power (dbm) 2.7v 3.0v 4.0v 5.5v t a = 25 o c, lo_in = -3dbm hfa3624
2-42 figure 38. transmit mixer lo to if port leakage vs lo frequency figure 39. receive mode i cc vs temperature figure 40. transmit mode i cc vs temperature figure 41. low noise amplifier gain vs temperature figure 42. receive mixer gain vs temperature figure 43. pre-amplifier gain vs temperature typical performance curves (continued) 2.02 2.07 2.12 2.17 2.22 2.27 2.32 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 rf frequency (ghz) power (dbm) t a = 25 o c, lo_in = -3dbm 2.7v 3.0v 5.5v 4.0v 10 15 20 25 30 35 40 temperature ( o c) i cc (ma) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v 20 30 40 50 60 70 80 90 100 110 120 temperature ( o c) i cc (ma) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 temperature ( o c) gain (db) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 temperature ( o c) gain (db) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v if = 280mhz, rf = 2.45ghz lo = -3dbm 5 6 7 8 9 10 11 12 13 14 15 temperature ( o c) gain (db) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v hfa3624
2-43 figure 44. transmit mixer gain vs temperature figure 45. recieve mixer lo to rf port leakage vs temperature figure 46. transmit mixer lo to rf port leakage vs temperature figure 47. receive mixer lo to if port leakage vs temperature figure 48. receive mixer gain vs lo drive figure 49. receive mixer ip3 vs lo drive typical performance curves (continued) -2 -1 0 1 2 3 4 temperature ( o c) gain (db) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 +5.5v +2.7v if = 280mhz, rf = 2.45ghz lo = -3dbm -27.5 -27.0 -26.5 -26.0 -25.5 -25.0 -24.5 temperature ( o c) power (dbm) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 lo_in = -3dbm at 2.17ghz +5.5v +2.7v -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 temperature ( o c) power (dbm) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 lo_in = -3dbm at 2.17ghz +5.5v +2.7v -29.0 -28.5 -28.0 -27.5 -27.0 -26.5 -26.0 temperature ( o c) power (dbm) -40 -30 -20 -10 0 10 20 30 40 50 60 70 85 lo_in = -3dbm at 2.17ghz +5.5v +2.7v -6 -5 -4 -3 -2 -1 0 1 2 3 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 lo drive (dbm) gain (db) t a = 25 o c, if = 280mhz rf = 2.45ghz -6 -5 -4 -3 -2 -1 0 1 2 3 1.5 2 2.5 3 3.5 4 4.5 5 5.5 lo drive (dbm) third order intercept (dbm) t a = 25 o c, if = 280mhz rf = 2.45ghz, f 1 - f 2 = 200khz hfa3624
2-44 figure 50. receive mixer ssb noise figure vs lo drive note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 51. transmit mixer gain vs lo drive note: transmit mixer measured with impedance transform net- work 250 w at device to 50 w at the source. refer to figure 5, pin 19. figure 52. transmit mixer output 1db compression vs lo drive note: txm_if input matching network modi?ed for each if fre- quency as described in table 1. figure 53. transmit mixer gain vs if frequency table 1. txm_if input 50 w to 250 w impedance transform circuit component values if freq lo capacitors c20, c28 if bypass c24, c21 if shunt c c25 if series l l4 10mhz 5pf 0.1 m f 150pf 1.2 m h 20mhz 5pf 0.022 m f 68pf 680nh 40mhz 5pf 0.012 m f 33pf 330nh 70mhz 5pf 0.0068mf 18pf 180nh 100mhz 7pf 0.0033mf 12pf 120nh 200mhz 7pf 1000pf 3.9pf 68nh 280mhz 10pf 470pf 1.5pf 47nh 400mhz 10pf 330pf 0 33nh note: refer to figure 5, pin 19. typical performance curves (continued) -6 -5 -4 -3 -2 -1 0 1 2 3 13.5 14 14.5 15 15.5 16 16.5 lo drive (dbm) noise figure (db) t a = 25 o c, if = 280mhz lo = 2.17ghz -6 -5 -4 -3 -2 -1 0 1 2 3 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 lo drive (dbm) gain (db) t a = 25 o c, rf = 2.45ghz if = 280mhz (note) -6 -5 -4 -3 -2 -1 0 1 2 3 -10.0 -9.9 -9.8 -9.7 -9.6 -9.5 -9.4 -9.3 -9.2 lo drive (dbm) 1db compression (dbm) t a = 25 o c, rf = 2.45ghz if = 280mhz (note) 80 60 20 10 40 100 200 400 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 if frequency (mhz) gain (db) +2.7v +3.0v +5.5v +4.0v t a = 25 o c, rf = 2.45ghz (note) hfa3624
2-45 all intersil semiconductor products are manufactured, assembled and tested under iso9000 quality systems certi?cation. intersil semiconductor products are sold by description only. intersil corporation reserves the right to make changes in circuit design and/or spec ifications at any time with- out notice. accordingly, the reader is cautioned to verify that data sheets are current before placing orders. information furnished by intersil is b elieved to be accurate and reliable. however, no responsibility is assumed by intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of th ird parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of intersil or its subsidiari es. for information regarding intersil corporation and its products, see web site http://www.intersil.com sales of?ce headquarters north america intersil corporation p. o. box 883, mail stop 53-204 melbourne, fl 32902 tel: (407) 724-7000 fax: (407) 724-7240 europe intersil sa mercure center 100, rue de la fusee 1130 brussels, belgium tel: (32) 2.724.2111 fax: (32) 2.724.22.05 asia intersil (taiwan) ltd. 7f-6, no. 101 fu hsing north road taipei, taiwan republic of china tel: (886) 2 2716 9310 fax: (886) 2 2715 3029 hfa3624


▲Up To Search▲   

 
Price & Availability of HFA3624IA96

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X